Pololu 2.5-7.5V 600mA Step-Down Voltage Regulator - D24V6ALV

Pololu 2.5-7.5V 600mA Step-Down Voltage Regulator - D24V6ALV

Out of Stock

Only left for same day shipping. Order now!
Earn
Pololu 2.5-7.5V 600mA Step-Down Voltage Regulator - D24V6ALV
This compact (0.4″ × 0.6″) D24V6ALV switching step-down (or buck) voltage regulator takes an input voltage between 4.5 V and 42 V and efficiently reduces it to a lower, user-adjustable voltage.

About this product

This compact (0.4″ × 0.6″) Polulu D24V6ALV switching step-down (or buck) voltage regulator takes an input voltage between 4.5 V and 42 V and efficiently reduces it to a lower, user-adjustable voltage. It has an output voltage range of 2.5 V to 7.5 V and a maximum output current of 600mA. The pins have a 0.1″ spacing, making this board compatible with standard solderless breadboards and perf boards.

These adjustable buck (step-down) voltage regulators generate lower, user-adjustable output voltages from a wide input voltage range of 4.5 to 42 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) and have a typical efficiency of 80%, which is much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large.

The regulator has short-circuit protection, and thermal shutdown prevents damage from overheating. The board does not have reverse-voltage protection.

Features

  • Input Voltage: 4.5 V to 42 V (note: the input voltage should be at least a few volts above the output voltage)
  • output adjustable from 2.5 V to 7.5 V (D24VxALV) or 4 V to 25 V (D24VxAHV)
  • the maximum output current of 300 mA (D24V3Axx) or 600 mA (D24V6Axx)
  • 1.25 MHz switching frequency
  • 2 mA typical no-load quiescent current (20 μA typical quiescent current with SHDN = 0V)
  • integrated over-temperature and over-current shutoff
  • small size: 0.6″ × 0.4″ × 0.16″ (15 × 10 × 4 mm)
  • weight without header pins: 0.03 oz (0.8 g)

Connections

The buck regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.3 V) to turn off the output and put the board into a low-power state that typically draws 20 μA, and it can be driven high (above 2.3 V) to enable the board. If you do not need to use the shutdown feature, the SHDN pin can be directly connected to VIN to permanently enable the board. You should not leave this pin disconnected as this can result in unpredictable behavior.

The input voltage, VIN, should be between 4.5 V and 42 V. If the input voltage gets too close to the output voltage, the output will start to drop, so you should ensure that VIN is at least a few volts above VOUT. You should also ensure that noise on your input does not exceed the 42 V maximum, and you should be wary of destructive LC spikes (see below for more information).

The output voltage, VOUT, is determined by the trimmer potentiometer position. Setting the output voltage to be higher than the input voltage will not damage the board, but it will produce an oscillating output rather than a clean power rail (see the oscilloscope capture below), so we recommend you avoid setting the output voltage to be higher than the input voltage. The available output voltage range depends on your input voltage, VIN, and the regulator version you have: 2.5 V to 7.5 V (D24VxALV) or 4 V to 25 V (D24VxAHV). The maximum available output current also depends on your regulator version: 300 mA (D24V3Axx) or 600 mA (D24V6Axx). Exceeding the maximum output current can cause the output voltage to drop below its set value.

Setting the output voltage

The output voltage can be measured using a multimeter. Turning the potentiometer clockwise increases the output voltage. The output voltage can be affected by a screwdriver touching the potentiometer, so the output measurement should be done with nothing touching the potentiometer. When setting the output voltage, note that the buck regulator can only produce voltages lower than the input voltage.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator typically has an efficiency of 70% to 90%. The maximum achievable output current of the board depends on many factors, including the ambient temperature, airflow, heat sinking, and the input and output voltage. See the graphs below for more details on the typical efficiency and output currents for this voltage regulator.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage (42 V), the regulator can be destroyed. In our tests with typical power leads (~30″ test clips), input voltages above 20 V caused spikes over 42 V. If you are connecting more than 20 V or your power leads or supply has high inductance, we recommend soldering a 33μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 50 V.

Includes

  • 1 x Pololu Step-Down Voltage Regulator D24V6ALV - #2103

More Information

SKU 14339
UPC (GTIN) 789862850687
Manufacturer Pololu
NDAA Compliant No
Item Returns This item can be returned

Also Purchased

Lumenier 850mAh 2s 35c Lipo Battery (XT-30)
$11.99
Back Ordered
Lumenier 1500mAh 6s 95c Lipo Battery
$45.99
Back Ordered
XILO 850mAh 6s 100c Lipo Battery
$39.99
XILO 1500mAh 5s 100c Lipo Battery
$28.99